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MAY HAVE 
A STRONG PARTITION RELATION 

BY 

SAHARON SHELAH* 

ABSTRACq" 

We prove the consistency, with ZFC + G.C.H., of a strong partition relation of 
N,, assuming the consistency of the existence of infinitely many compact 
cardinals. 

The Erdos-Rado theorem and related partition theorems (see Erdos, Hajnal 

and Rado [3]) have been very useful. Unfortunately, the really good partition 

theorems are true only for large cardinals. So a natural question is: what is the 

best partition theorem which a small cardinal may satisfy? This may be a way to 

give independence results (and usually V = L will give the negation). 

In Shelah [8], answering a question of Erdos and Hajnal [1], [2], we gave such 

a partition theorem for 1~, which is consistent with ZFC + G.C.H. We ask there 

whether a much s.tronger partition theorem is consistent too. We shall give here 

a positive answer, but we use a stronger hypothesis (the consistency of ZFC of 

the existence of X0 compact rather than measurable cardinals). 

On similar assertions proved in ZFC, see Erdos, Hajnal, Mate and Rado [4] 
and Shelah [7]. 

NOTATION. Natural numbers are denoted by k, l, m, r, ordinals by i, j, a,/3, y, 

~, ~', 7/, v, cardinals by A, K, p,, X. We define =~ (A) by induction on a :no(A) = )t, 

and ~ ( , ~ ) =  E~<~ 2=~ (~) for a > 0 .  Let A <" = E~<,,A". 

If < orders A, BC_A, CC_A, a ~ A  then B < a  means ( V x E B ) x < a ,  

B < C means (Vx E B) (Vy ~ C) (x < y), etc. 

Let [A]" ={B:BC_A, [B[ = x}, [A] <" ={B:BC_A, IBI<K} .  

We define x +~ for an infinite cardinal x and an ordinal a :  if x = X0 then 

k § = N~+~. 
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We define: A ~ (/z)~, means that for any n-place function F from A to X, there 

is B E [A ]", such that F has a constant value on all increasing n-tuples from B. 

1. DEFINITION. ( A ~ : ~ < 0 )  has a ( r (~ ) :~<0) -canon ica l  form for F =  

{?(i)e~: i < a} [where x ( i )  is a non-zero cardinal, and ? ( i )=  (n~(i) ; . . . ;  hE(i)), 

nm (i)----> 0 and ~e(i) are natural numbers, and for each F = (n~ ; . . . ;  nk ) we denote 

n( f )  = X~=~ n~, k(F) = k, nm (?') = n~] if for every set A, (~ < 0), IA, I = A, (and 

< well orders I,.J,<oAo A, < A ~  for ~:<r / )  and functions ~ (i < a ) ,  )~ an 

n(F(i))-place function from U , A ,  to x ( i }  there are Be C_ Ae, IB, I = K(~) such 

that for every i, ~ is f(u)e")-canonical on (B , :~  < 0). This means that when 

~:~ < "" " < ~:k(.O) < 0, 

a~ < �9 �9 �9 < a.,t,o) E B,,, a.,t,o)+~ < �9 �9 �9 < a.,t,~))+~t~,)) ~ Be2, etc., 

then ~ ( a l , . . . ,  a.t,,~) depends on g~,. . . ,  ~k, a , , . . . ,  a.t,t,>)-et,) only (and not on 

ante t i ) ) -e+l ,  " " ", antet0))- 

2. MAIN THEOREM. Assume ZFC + G.C.H. is consistent with the existence of 

infinitely many compact cardinals (we use much less). 

Then ZFC + G.C.H. is consistent with: 

(Nk,t,) : n < w ) has (~ k2,.) : n < co ))- canonical [orms /or 

F = { ( n , n  + 1 , . . .  m~ "+t"+~) . . . . . . .  n < m < w} 
' f" Mk2(n ) -  1 " 

where k l (n)  = (n + 5)n/2 + n + 1, k2(n) = (n + 5)n/2 + 1. 

The rest of the paper is dedicated to a proof, via forcing, starting with a model 

V such that: 

3. HYPOTHESIS. G.C.H. holds and there are compact cardinals No = Ko < r l  < 

t r  " ' "  < .  

On forcing see e.g. Jech [5]. The proof proceeds via various claims and 

definitions. 

4. DEFINITIONS. Let D~(A,/z,X) be the following filter: 

(a) It is a filter over Inc(A,/x) which is the set of increasing sequences of length 

/x of ordinals < A (if the universe V is not self-evident, we write Inc()t,/z)v). 

(b) The filter is generated by the set of generators, where a generator is 
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Ge(F) = Ge.  (F; ,L IZ, X) 

={ti E Inc(A,/z):for some a < X  for any i (0)< . . .  < i(n - 1)</z,  

F(a.o~, . . ., a..-i~) = a}, 

where F is any n-place function from A to X. 

5. CLAIM. (1) I[ X = X <" (which holds always[or K = Xo) then the intersection 

of < K generators of D,(A,~,X) is a generator: hence the filter D.(Ar is 

K-complete. 
n (2) If  h (l~)x (the usual partition relation) then D. (h, IX, X) is a proper filter, 

i.e., the empty set does not belong to it. 

PROOF. Trivial. 

6. NOTATION. Let E, be a normal ultrafilter over K. (exists because as K. is 

compact, it is a measurable cardinal). Let I. = Inc(x.  +t"§ K. +1) and J. = K. X I.. 

Note that D.+I(r.+~"+~,K.+I,K.) is a K.-complete (proper)fi l ter (as r .  <K"= r.,  

because K. is compact, hence strongly inaccessible; and as G.C.H. holds, 

D i +~-§ +1 x ;o proper filter). So as K. is compact there is a K.-complete n+I~,K n ~K n , K, , / .o  a 

ultrafilter D* o v e r / ,  extending D.+I(K.+<"+1~,K.+~,K.). SO 

F. = E. x D*. ={A C_J. = K. X I. :{i < K. :{t E I .  : ( i , t ) E A } E D * } i s i n E . } .  

We call f : J .  ~ K. regressive if f (a,  t)[a < K, t E / .  ; more formally f((a,  t))] is 

an ordinal < a. We call it regressive on A if f (a ,  t ) <  a for (a, t ) E  A ;  and 
almost regressive if it is regressive on some A E F.. We define, when [ is 

constant, constant on A and almost constant, similarly. 

7. CLAIM. Every almost regressive [unction f : J. ~ K is almost constant. 

PROOF. Let [ be regressive on B ~ F.. Let B~ = {t E I. : (a, t) E B}, so for 

some B '  C K, B '  E E.  and B~ E D* for a E B'.  

For each a E B',  {A~:/3 < a} where A ~ = {t E / .  : f (a ,  t) =/3} is a partition of 

no to la l  <K parts. As D* is K-complete, B~ ~ D * ,  for some /3 = h ( a ) < a ,  

A , t ~ E D * .  So h is a regressive function on B'.  Hence as B ' ~ E .  and E.  is 

normal, there is 3' < K such that {a : h ( a ) =  3'} ~ E.. Trivially 

{(t~, t): f (a,  t) = 3"}E 17,. x D* = F, 

and of course f is constant on this set. 
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8. THE FORCING. Let P. be the Levi collapse of 1(.+1 to 1(+.+3; i.e., P. collapse 

every A, 1("+..1 < A < 1(.+1 to 1("+..2, and each condition consists of r"+ ".1 atomic 

conditions of the form HT(a) =/3 (A as above, a < 1("+.+2,/3 < )t) (see e.g. [5]). 

The order is inclusion. Let 

p [~ = { " H ~ ( a ) = / 3 "  : H ~ ( a ) = / 3  belong to p, A < ~} 

and A(p) = Sup{A : for some a,/3, H~(ot)=/3 belong to p}. 

Let P = II .<,P..  Let G C P be generic, G. = G n P,. Let ~b. E P. be the 

empty condition (so we stipulate n ~  m, th.~ ~bm). We identify (p0,'" .,p._~)E 

l-It<. Pe with (po," " ", p.-~, ok., r " " ) and p E P. with 

(~b0, �9 �9 ", 6.-],  P, 6.+1, 6 . + 2 , ' "  ). 
+1 +2  As is well known the first to cardinals in V[G] are No = Ko, Ko , 1(0 , 1(1, 1(~-1, 

+2 +3  +1 +2  +3  +4  +1 + n + l  + n + 2  
1(I , K I  ~ 1(2, K2 ~ 1(2 ~ K2 ~ 1(2 ~ 1(3~ ' "  "~Kn~ K n  , ' ' ' ~ K n  , K n  , K n + l , ' "  " -  Also 
V[G] satisfies G.C.H. 

Let f be (in V[G]) a function from increasing finite sequences from I% to ~L, 

such that for a o <  " "  < ak < 1("+"+~, f (ao , ' "  ", a k ) <  1(. and w.l.o.g, from the 

value of f for ( a 0 , " ' , a k )  we can compute its value on any increasing 

subsequence starting with ao. 

We have to prove that there are sets S. (n>O) ,  S. C1("+ "+~, Is.l=1(2, 
S, O 1(. = O, and for every increasing sequence ao < " "  < a~-i of members of 

U . S , ,  Is ,  n { a o , . . . } l  is n + l  for no<=n<=m, and zero otherwise, that 

f ( a o , "  ", a~-l) depend only on k and the truth values of "ae E S . " .  Moreover, 

this is sufficient for proving the theorem. 

So let f be a P-name of f, and p = ( p . : n < t o ) E P .  We shall find p',  

p =< p ' E  P, and S. p '  I1-0 "S, (n < to) are as required". This clearly suffices. 

9.. CLAIM. I f  A E F.+,, p<~,,> E P, for every (a, t) E A then there is B C_ A,  

B ~F,+~ and q ~ P .  such that: 

(*) for any (a, t) E B, p<,,,~ [ a = q, 

hence 

(**) foranyr,  q<=rEP. ,  i f A ( r ) < a ,  (ct, t ) E B  

then p <~.,>, r are compatible. 

PROOF. It is easy to prove (*) by the normality of F,, and (**) follows easily 

by the definition of P.. 
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10. PROOF OF THE THEOREM. We continue 8. 

First, as each Pe is K ~(e+2)-complete, we can find too = (pO, pO, . . .  ),/~ =</30, such 

that  for each n: 

(0) p o l l - p " f l r ,  +(~ is determined by forcing with I -L<,P/ ' .  So for some 

lie<. Pc-name f. ,  Po IF " f  [ K +~.+1) = f .  ,, 

Now we define by induction on k, a condition/~k = (P~,PL''" ), sets A keE Fe 
(~' < to) and conditions q~.,)E Pe ((a, t) E A ~, e < to) such that:  

~k<--k+lqn Pc), A k+l (1) v e = e e  ~ e C_Ake, (ot, t )~A~ 
(2) k k+, q~,,) < q<~.,> for (a, t) E A k+,. 

k ~  k - -  k (3) pe = q~,,~, moreover pk__ q~,,)Ia (for (a, t) E A ke); 
(4) for any n,k for some l-le<.Pe-name [k for any (a.+,,t.+~)EAk.+,, 

(a,,+2, t,~+2) E A ~+2," ", (a,+k, t,+k) E A ~+~ and increasing sequences /3,+e from 

t.+e of length n + ~e + 1 for # = 1 , . . . ,  k, 

k 

/~k U I..J q< ..... ,.+,~ I1-1, "for  any increasing sequence 37 from K. +("+" 

f (37, f t .+,, . .  -, s  ) = / 

(note that  /~k O U k k k k k e=, q~ ......... ~ = (poe, ' '  ", p ._, ,  p . ,  p.+, tO q~ ......... ) , '"  ", p.+k tO 
q<~.+~.,.+~, pk.+k+,,''" )). 

For k = 0 .  Let  Ak. = {(a, t ) E J ,  : [,.Je<.Ke < a < K.}, 

k _ _  0 q<~,,>-p, for (a , t )EAk, .  

For k + 1. Let  n < to, remember  [k.+l is a lie <. Pe-name of a function with 

domain the increasing finite sequences f rom K.+1+("+2) and range C K.+t"+:) (except 

on the empty sequence, which is immaterial).  Remember  that  G.C.H.  holds, 

each r~ is regular and IIe<{.<~Pe satisfies the ~,+,-chain condition. 
+ ( . + 2 )  S o f o r e a c h s e q u e n c e 6 = ( a o , . . . , a . ) , a o < . . . < a . + ~ < x . + ~  there is a set 

{(r~, y ~ ) :  i <  i(6)}, {r~: i <  i(~)} a maximal antichain of I-Ie<=.Pe, y~ < +~.+2~ 
and r~ IF"[ ~+,(&)= y~ ". We define an (n + 2)-place function G~ on ~+~+.+2): 

= C ) : i  < 

The range of G~ has cardinality =< r,+l (as i (a)< r .  because [lea. Pe satisfies 

the r .+l-chain condition, and r~ ~ lie<=. Pc, [He<=. Pe [ = K.+~; y~ < ~ +(.+2) < K.+1 
and ~<+ky, = r.+l). 

Let  B = {t ~ I.+1: G .  ~ has the same value on all increasing sequences of length 

(n + 2) from t}. By definition 

D n + I  
, + ( . + 2 )  + i  K , , + I ) ( Z  * B E / . ~ . + I l K , + a  ,K,+a,  _ �9 
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Hence B '  = {(a, t> E J.+, : t ~ B} ~ F,+l. 

For every <a, t) E A .~+,, choose an increasing sequence of length (n + 2) from 
t,/3, and we can find k+~ k < k+l~ k+~ k q<a.,), q<a,o q<~,o ~ Pn, and force = q<a.,> (~', f .+l (~/^fi): ~ an 

+(n+l)\ increasing finite sequence from K. t to be equal to some He<. P~-name k f <a,t> 

(possible as Pn is K.+{n+2)-complete). If (a, t ) E B '  too, then the choice of ~ is 

immaterial. Now by Claim 9, we can find A k+l .§ C__ B '  f3 A .+~, as required, and as 

the number of possible f<~,o is < x +~'+2) we can assume [<~,,>- for every 

( a , t ) E A ~ + , .  

This really finishes the proof. 

We define A ~ ~ < ~ A  k = U  k U e = e, q ~ . , >  k<~q<~.,> and p7 = k<~pe for 

(a, t) E A 7. As each Fe is Ke-complete, A 7 E Fe. It is also clear that p7 E Pe and 

q~.,>EPe for ( a , t ) ~ A T .  

Choose (at, te) E AT, and let pl = (q~%o.,o>, q<%,.,,>,'" ", q~,.,,>,"" ) and St = te. It 

is easy to check they are as required. 

CONCLUDING REMARKS. An alternative presentation of the proof is that, after 

the collapse, the filter that D*+I generates (over Inc(K,+t"+l),r,+l)) is still 

K,+l-complete, and it has the K,+t"+'-Laver property, i.e., there is a family S of 

subsets of I,+l ( E  V) which is x,+t"+2~-complete (i.e., the intersection of any 

descending to chain of members of S is in S (or just contain a member)), is dense 

(if A C_In, L - A ~ D * + I  then A contains a member of S), and A E S - - ~ A  _C 

I. ^ L - A ~ D * + I .  
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